

# Measuring and detecting quantum entanglement or nonlocality via Hong-Ou-Mandel interference

Karol Bartkiewicz<sup>1,2</sup>, Grzegorz Chimczak<sup>1</sup>, Antonín Černoch<sup>2</sup>, Karel Lemr<sup>2</sup>, Adam Miranowicz<sup>1</sup>

<sup>1</sup>Faculty of Physics, Adam Mickiewicz University in Poznań,

<sup>2</sup>RCPTM, Joint Laboratory of Optics of Palacký University and Institute of Physics of Academy of Sciences of the Czech Republic, Faculty of Science, Palacký University, Olomouc, Czech Republic

## **Detecting entanglement**



# Measuring entanglement



# **Two-copy experiment**



#### Geometric pictures



| Space of matrix T                                                     | (9 real parameters)               |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------|-----------------------------------|--|--|--|--|--|--|--|
| Each point is given as                                                |                                   |  |  |  |  |  |  |  |
| $\vec{t} = [T_{1,1}, T_{2,2}, T_{33}],$                               |                                   |  |  |  |  |  |  |  |
| where T is a diagonal matrix. All physical states can be moved to the |                                   |  |  |  |  |  |  |  |
| tetrahedron ${\mathcal T}$ (or $-{\mathcal T}$ ). All separable       | e states are found in the octahe- |  |  |  |  |  |  |  |
| dron [1].                                                             |                                   |  |  |  |  |  |  |  |

#### Space of matrix R

(6 real parameters)

It is convenient to use real, positive and symmetric matrix  $R = T^T T$ (6 real parameters). In this representation each physical state is now found in a cube.

#### Two-copy formula

 $\mathsf{R}_{i,j} = \operatorname{Tr}\left[(\rho_{a_1b_1} \otimes \rho_{a_2b_2}) S_{a_1a_2} \otimes (\sigma_i \otimes \sigma_j)_{b_1b_2}\right],$ 

#### Characteristic two-qubit states

 $\mathcal{W} = \frac{q}{4}I + p|\Psi^{-}\rangle\langle\Psi^{-}|, \mathcal{H} = p|HH\rangle\langle HH| + q|\Psi^{-}\rangle\langle\Psi^{-}|,$ 

 $\mathcal{P} = (\sqrt{p}|HH\rangle + \sqrt{q}|VV\rangle)(H.c.), \text{ for } q = 1 - p \text{ and } 0 \le p \le 1$ 

## Interferometers

#### Four-copy HOM interference

There are 2 interferometric events that do not matter for measuring N [8].



| the second s |       |           |   |                                  |         |                | ×              |   |
|----------------------------------------------------------------------------------------------------------------|-------|-----------|---|----------------------------------|---------|----------------|----------------|---|
| b <sub>2</sub>                                                                                                 |       | ΠΠ        |   | ΠΠ                               |         | b <sub>1</sub> |                |   |
| M <sub>2</sub>                                                                                                 | POL F | HWP4 QWP4 | Q | WP <sub>2</sub> HWP <sub>2</sub> | 2 F POL | - Delay        |                | 2 |
| Bob                                                                                                            |       |           |   |                                  |         |                | D <sub>4</sub> | ŀ |
| Bob                                                                                                            |       |           |   |                                  |         |                |                |   |

Measurement:  $(\sigma_i \otimes \sigma_j)_{b_1b_2}$ 

This experimental setup was used in Refs. [9, 10].

## **Experimental results**

Experimental results for the Werner states [11]

 $\mathcal{W} = \frac{1-p}{4}I + p|\Psi^-\rangle\langle\Psi^-| p_F = \frac{1}{3}, p_E = \frac{1}{\sqrt{3}}, p_M = \frac{1}{\sqrt{2}}.$ 



## Fully entangled fraction

#### Fidelity

of teleportation based technologies

 $f = \frac{1}{6}(|t_1| + |t_2| + |t_3| + 2)$ 

or  $f = \frac{1}{3}(1 + 2FEF) = \frac{1}{6}(Tr\sqrt{R} + 2)$ . This is related to the probability of successful teleportation, entanglement swapping, generating a secure cryptographic key bit etc.

#### **FEF** quantifier

 $\mathsf{F} = \frac{1}{2}(\mathrm{Tr}\sqrt{\mathsf{R}} - 1)$ 

## Entropic entanglement witness

#### Purity (linear entropy)

Purity of separable state (lin. entropy  $\propto 1 - \text{Tr} \rho^2$ )  $\operatorname{Tr} \rho_{ab}^2 \geq \min(\operatorname{Tr} \rho_a^2, \operatorname{Tr} \rho_b^2)$ 

#### Entropic witness

 $E = 2[Tr\rho_{ab}^2 - min(Tr\rho_a^2, Tr\rho_b^2)] = \frac{1}{2}(TrR - 1 + |Tr\rho_a^2 - Tr\rho_b^2|)$ 

## Web of singlet projections

#### Prime detection events

Events are found with local invariants and Cayley-Hamilton theorem [8].





#### Maximum likelihood estimation (MLE)

To ensure the positivity of the matrices, we use the maximum-likelihood method developed for quantum state tomography [12].



#### MLE for R matrix

All physical R matrices are found in the cube, where the probabilities of coincidence detection are properly defined for any measurement basis. The most likely physical matrix R, for which  $0 \le r_j \le 1$  for j = 1, 2, 3and  $[r_1, r_2, r_3] = eig(R)$ , is found by maximizing the logarithmic likelihood function



#### **Bell CHSH nonlocality**

#### Bell CHSH inequality

For local states

 $\max_{\mathcal{B}_{CHSH}} |\mathrm{Tr} \left( \rho \, \mathcal{B}_{CHSH} \right)| = 2 \sqrt{\mathrm{Tr} \mathbf{R} - \min[\mathrm{eig}(\mathbf{R})]} \le 2,$ where  $\mathcal{B}_{CHSH} = \hat{a} \cdot \vec{\sigma} \otimes (\hat{b} + \hat{b}') \cdot \vec{\sigma} + a' \cdot \vec{\sigma} \otimes (\hat{b} - \hat{b}') \cdot \vec{\sigma}$  depends on unit vectors in 3D real space  $\hat{a}, \hat{b}, \hat{a}', \hat{b}'$  [5]. For correlations that do not break Bell's (CHSH) inequality (insecure QKD) one can construct a local hidden variable model [4, 3].

CHSH nonlocality measure

 $M = \text{Tr}R - \min[\text{eig}(R)] - 1$ 

## Acknowledgments

#### Narodowe Centrum Nauki

Nonlinear properties of low dimesional quantum states: direct measurement and applications in quantum information processing

Registry No.: 2013/11/D/ST2/02638

#### Grantová agentura České republiky

Designing and implementing multi-photon quantum circuits

Registry No.: 15-07559Y

## *References*

- R. Horodecki, M. Horodecki, Phys. Rev. A 54, 1050 (1996).
- KB, B. Horst, K. Lemr, and A. Miranowicz, Phys. Rev. A 88, 052105 (2013).
- J. S. Bell, Physics **1**, 195 (1964).
- J. Clauser, M. Horne, A. Shimony, R. Holt, Phys. Rev. Lett. 23, 880 (1969).
- M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A 223, 1 (1996). [5]
- K. Życzkowski, P. Horodecki, A. Sanpera, M. Lewenstein, Phys. Rev. A 58, 883 (1998)
- K. Audenaert, M. B. Plenio, J. Eisert, Phys. Rev. Lett. 90, 027901 (2003).
- KB, G. Chimczak, K. Lemr, Phys. Rev. A 95, 022331 (2017).
- [9] K. Lemr, KB, A. Černoch, Phys. Rev. A 94, 052334 (2016).
- [10] KB, A. Černoch, K. Lemr, A. Miranowicz, Phys. Rev. A 95, 030102(R) (2017).
- [11] R. Werner Phys. Rev. A 40, 4277 (1989).
- [12] D. James, P. Kwiat, W. Munro, and A. White, Phys. Rev. A 64, 052312 (2001).

### 24th Central European Workshop on Quantum Optics, 26-30 JUNE 2017, DTU LYNGBY, DENMARK