Beam-splitting tricks

Antonín Černoch

Joint Laboratory of Optics of Palacký University and Institute of Physics of AS ČR

A. Černoch (Joint Laboratory of Optics)

∃ ► < ∃ ►</p>

Content

Quantum Information Processing with Linear Optics

- 2 Experiment preparation
- 3
- ess is sometimes more.

Overkill strategy

イロト イロト イヨト イヨト

Quantum information processing faster computation iunction 2 secret information transfer superconductor Possible platforms ionts in Pauli trap junction 1 insulator Josephsons junction light – cw or single photons 0. Linear optics E. Knill, R. Laflamme & -45° NS -G. J. Milburn, Nature (London) 45° 409, 46 (2001) 45 BS and phase shifts Q2

bias current

(B.)

n -(R7)-

n (B3)-

BS description

- t amplitude transmissivity
- r amplitude reflectivity
- T intensity transmittance, $T = |t|^2$
- *R* intensity reflectance, $R = |r|^2$

Transformation on spatial modes

$$\left(\begin{array}{c} \hat{a}'_{1} \\ \hat{a}'_{2} \end{array}\right) = \left(\begin{array}{c} r & t' \\ t & r' \end{array}\right) \left(\begin{array}{c} \hat{a}_{1} \\ \hat{a}_{2} \end{array}\right)$$

Ideal BS

$$|r'| = |r|, |t'| = |t|, |r|^2 + |t|^2 = 1$$

 $r^*t' + r't^* = 0$ $r^*t + r't'^* = 0$

Fifty-to-fifty beam-splitter

One-to-two beam-splitter

Are you kidding?

Content

Quantum Information Processing with Linear Optics

2 Experiment preparation

Less is sometimes more

Overkill strategy

э

イロト イロト イヨト イヨト

What we want and what we have

Cube 50/50 BS (05BC16NP.7)input121'2' R_H [%]42434243 R_V [%]56565455

Broadband plate 50/50 BS (BSW08)				
	input	1	2	
_	R _H [%]	39	38	
	R _V [%]	65	65	

 Image: specification s:
 input
 1
 2

 $R_s = 66\% \pm 5\%$ $R_H [\%]$ 28
 26

 $T_p = 97\%$ $R_V [\%]$ 74
 72

Fiber optics - feasible but unstable

- variable ratio coupler
- polarization insensitive
- spatial encoding recommended

Content

- Quantum Information Processing with Linear Optics
- 2 Experiment preparation

Less is sometimes more

Overkill strategy

イロト イポト イヨト イヨト

Coupling losses

Polarization dependent losses

Polarization dependent losses

Beam Divider Assembly in work source of photon pairs cw Kr-ion Ist clone FPC analysis signal IН C&C PDBS ancilla LilO₃ 1_{2H} 2nd clone FPC analysis **HWP**M QWP BD NDF PBS D

Content

- Quantum Information Processing with Linear Optics
- 2 Experiment preparation
- 3 Less is sometimes mor

イロト イ団ト イヨト イヨト

Interferometer as a tunable beam-splitter

Polarization dependent splitting by interferometer

First steps in 2005

big and unstable, bad visibility because SM not used

• • • • • • • • • • •

ъ

New hope

Jan Jašek diploma thesis on Machine learned cloning

- $R_H \sim \cos^2 2\theta_1$
- $R_V \sim \cos^2 2\theta_2$
- *θ* control phase
 between *H* and *V*

Improvements

- manufactured PBS are better than BS ($R_V > 99.5\%$, $T_H > 90\%$)
- HWP only two surfaces with anti-reflections

Overkill strategy

- compact cage system
- air-condition
- covering box

Preliminary measurements: phase stability per 100 s

WORKING

Overkill strategy

This is the END – thanks for attention

