

Building a quantum router for discrete photons using linear optics

Palacký University Olomouc Karol Barkiewicz, Antonín Černoch and Karel Lemr

Joint Laboratory of Optics, Palacky University and Institute of Physics of Czech Academy of Sciences web: http://jointlab.upol.cz/lemr

✓ quantum cryptography commercially available

quantum cryptography commercially available

✓ quantum cryptography commercially available

quantum cryptography commercially available

Paweł Horodecki TM (Poland)

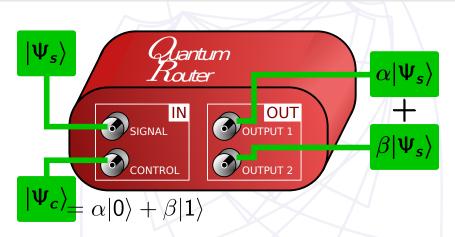
Karel Lemr

- quantum cryptography commercially available
- ✓ long-distance quantum communications experimentally tested

- quantum cryptography commercially available
- ✓ long-distance quantum communications experimentally tested

← Nature **489**, 269 (2012)

- quantum cryptography commercially available
- $\checkmark\,$ long-distance quantum communications experimentally tested

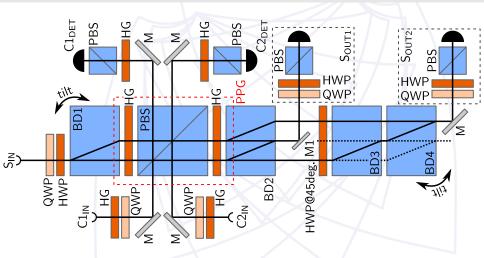

← Nat. Photon. **10**, 671 (2016)

- quantum cryptography commercially available
- ✓ long-distance quantum communications experimentally tested
- x so far limited to simple network geometry (e.g. one-to-one)

- quantum cryptography commercially available
- ✓ long-distance quantum communications experimentally tested
- ✗ so far limited to simple network geometry (e.g. one-to-one)

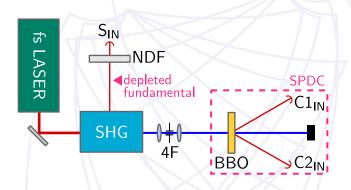
 \rightarrow solution: quantum routers (joining multiple users and routing quantum information from source to destination)

Quantum router - general concept



 coherently routes signal qubit into two (or more) spatial modes depending on the control qubit

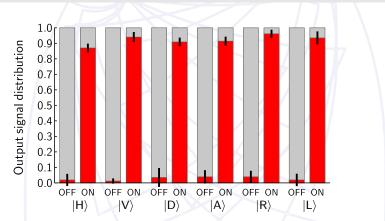
Previous implementations & proposals


Platform	Implementations	Note
light-atoms	Zueco et al., PRA 80 , 042303 (2009). Aoki et al., PRL 102 , 083601 (2009). Hoi et al., PRL 107 , 073601 (2011). Zhan et al., PRA 90 012331 (2014).	experimentally demanding
light beams	Hall et al., PRL 106 , 053901 (2011).	classical control
nonlinear	Chen, Lin, Sci. Chin. Inf. 57 , 1 (2014).	strong Kerr
linear opt.	Zhan <i>et al.</i> , PRA 90 012331 (2014). Vitelli <i>et al.</i> , Nat. Phot. 7 521 (2013).	classical signal P _{succ.} = 1/8

Our implementation

■ 2 control qubits, only real output superpositions, P_{succ.} = 1/4

Three-photon source

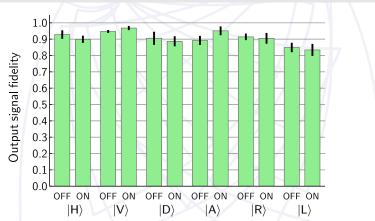


- control photons: Type I SPDC
- signal photon: attenuated depleted fundamental beam
- imperfection: parasitic coincidences (e.g. two photons in S_{IN})

Karel Lemr

Building a quantum router

(phase I) routing ON/OFF

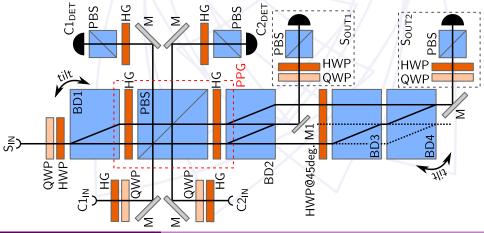

six input signal states: H,V,D,A,R,L & control qubits set to $|0\rangle$, $|1\rangle$.

probability of observing the signal in output ports 1 and 2

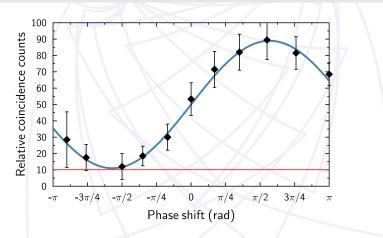
Karel Lemr

Building a quantum router

(phase II) routing fidelity


six input signal states: H,V,D,A,R,L & control qubits set to $|0\rangle$, $|1\rangle$.

measuring fidelity of the output state


Karel Lemr

(phase III) routing coherence

- tested for H signal state
- removing M1 and BD3 (dotted beam path), tilting BD4

(phase III) routing coherence

red line – parasitic coincidences level

• corrected visibility 97.7 \pm 0.3 %

Karel Lemr

Thank You for your attention