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Transmission of quantum information is fragile

What could possibly go wrong?
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amplitude damping

decoherence

"For the night is dark and full of (t)errors", R. R. Martin
The longer the channel, the bigger the problem.
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Quantum repeaters and relays
solution for long-distance quantum communications

Quantum repeater
[Briegel et al., PRL 81, 5932 (1998)]
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Entanglement swapping
core protocol in repeaters and relays

quantum relays: allows to divide the channel into multiple
shorter segments

quantum repeaters: allows to perform heralding and
amplification

Protocol geometry:
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Entanglement swapping
previous experiments

1998: first experimental implementation

verification: correlation fringes (many measurements + fit)
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Entanglement swapping
previous experiments

2001: subsequent experimental implementation

verification: CHSH inequalities (16 measurements)
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Entanglement swapping
previous experiments

2004: teleportation in relay configuration

verification: correlation fringes (many measurements + fit)
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Entanglement swapping
previous experiments

2005: swapping over 1.1 km

verification: correlation fringes (many measurements + fit)
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Entanglement swapping
previous experiments

2006: swapping with independent sources

verification: correlation fringes (many measurements + fit)
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Entanglement swapping
previous experiments

2007: swapping with independent CW sources

verification: correlation fringes (many measurements + fit)
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And now for something (not completely) different...
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Collective entanglement witness
detecting entanglement with multiple copies of tested state
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Collective entanglement witness
experimental implementation
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Collectibility and entanglement swapping
what makes them similar

3 geometry: identical (Bell measurement across pairs)

3 entanglement swapping: requires two pure identical Bell states

3 collectibility: detects (and measures) best (almost) pure states,
two copies are needed

3 collectibility: requires only 4 measurement configurations
(local projections: |00〉, |01〉, |11〉, |+ +〉)

Why not use collectibility for relay diagnostics?
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Experimental implementation

HWPA BD HWPB BD L1 2xBBO L2 QWPC M3

F HWP3 QWP3

F HWP4 QWP4M2

M1

QWP2 HWP2 F

QWP1 HWP1 F
a2

b1

PDL

M
irr
or

PC a1
PC
Delay

b2

Delay

cc logic

FBS

4PS

D1

D3

D2

D4

Alice

Bob

Ri,j

Pu
m
p

tilt

POLPOL

constructed a quantum relay using linear optics

used QWP and HWP to simulate errors
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Experimental implementation
measurement procedure

four-fold coincidence acquisition was split into 60 segments
(each about 10 minutes long)

for each segment: randomly introduce error (a) between EPR
and Alice, (b) between EPR and Bob

ALICE BOB

EPR

EPR

the error corresponds to one of three tested damping channels
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Phase-damping channel

Kraus operators:

M0 =
√

1− p
2 1̂,M1

√
p
2 σ̂z

Experimental implementation:

QWP at: 45 degrees (1− p), −45 degrees (p/2)

Effect:

Transition: |Φ+〉〈Φ+| → 1
2 (|HH〉〈HH|+ |VV 〉〈VV |)
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Phase-damping channel
results
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Depolarizing channel

Kraus operators:

M0 =
√

1− p1̂,M1

√
p
3 σ̂x ,M1

√
p
3 σ̂y ,M1

√
p
3 σ̂z

Experimental implementation:

Probability: (1-p) p/3 p/3 p/3
QWP at: +45 -45 +45 -45 degrees
HWP at: 0 0 45 45 degrees

Effect:

|Φ+〉〈Φ+| → 1
4 (|HV 〉〈HV |+ |VH〉〈VH|+ |HH〉〈HH|+ |VV 〉〈VV |)
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Depolarizing channel
results
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Amplitude-damping channel

Non-unitary transformation:

ρ̂→
(

1 0
0
√

1− p

)
ρ̂

(
1 0
0
√

1− p

)

Experimental implementation:

Single-shot measurement + post-selection (accept randomly
vertical polarization results)

Effect:

|Φ+〉 → |HH〉 (remains pure)
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Amplitude-damping channel
results
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Characteristic signatures

perfect channel depolarizing phase damping amplitude damp.

each channel type introduces characteristic errors
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Asymmetric channels

the method behaves quite well if the channel errors on Alice’s
and Bob’s side are asymmetric
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Thank You for your attention!
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