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Detection of entangled states is essential in both fundamental and applied quantum physics.

However, this task proves to be challenging especially for general quantum states. One can execute
full state tomography but this method is time demanding especially in complex systems. Other ap-
proaches use entanglement witnesses, these methods tend to be less demanding but lack reliabil-
ity. Here, we demonstrate that ANN – artificial neural networks provide a balance between both ap-
proaches. In this paper,wemakea comparisonofANNperformance againstwitness-basedmethods
for random general 2-qubit quantum states without any prior information on the states. Further-
more, we apply our approach to real experimental data set.

I. INTRODUCTION

Quantum entanglement is an intriguing phe-
nomenon described almost a century ago by
Schrödinger, Einstein, Podolsky, and Rosen [1, 2].
Since thenmany theoretical and practical papers alike,
aswell as vivid discussions, were dedicated to this topic
[3–5]. The ability to effectively detect entangled state
became essential mainly because of their application
potential in quantum computing [6], quantum cryp-
tography [7], and quantum teleportation experiments
[8]. The most robust way of detecting it is via a full
state tomography and density matrix estimation [9].
This method allows us to obtain all information about
the state and thus correctly detect entanglement. Un-
fortunately this method is experimentally demanding
because the number of required projections grows
exponentially with the dimension of Hilbert space.
There is also a variety of other methods that do not
rely on full-state tomography [10–30]. These methods
include a wide range of linear entanglement witnesses
[11–16] of the CHSH – Clauser Horne Shimony Holt
type [10]. While for pure states, these methods give
similar results, their outcomes might vary significantly
when mixed states are considered. While requiring
only a relatively few measurement configurations,
these witnesses can not reliably function without
some a prior information about the detected state. To
circumvent this limitation, while not resorting to state
tomography, non-linear entanglement witnesses have
been proposed.
In 2011, Rudnicki et al. introduced a nonlinear en-
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tanglement witness called Collectibility [24, 26]. For a
visual demonstration of this concept [see Fig.1 (a)]. For
2-qubit states, thiswitness requires two simultaneously
prepared copies of the investigated state. Then a Bell
state projection is imposed on a pair of correspond-
ing qubits from each copy and the remaining qubits are
subjected to local measurements. For a general 2-qubit
state, this requires a combination of 5 local projections
and, thus, fewer measurement configuration than full
quantum state tomography which includes at least 24
projections. One can further decrease the time needed
for aQST ifmeasurements can be performed in parallel
onmultiple copies of the investigated state. Whendeal-
ingwithunknownquantumstates, collectibility cande-
tect a much broader range of states compared to linear
witnesses. Namely, it detects all pure entangled states.
Unfortunately, it detects entanglement of only a frac-
tion of mixed states. This shortcoming is character-
ized by a rather big Type-II error (false negative), as we
show later. On the other hand, all states which are clas-
sified as entangled by this method are classified cor-
rectly (Type-I error is null, there are no false-positive
classifications). We demonstrate that significant im-
provement can be reached when collective entangle-
ment witnesses are devised using an artificial neural
network. As demonstrated by Gao et al. [31] and other
groups [32, 33], neural networks can be used to iden-
tifyquantumstates. However, only linearentanglement
witnesses were considered which significantly limited
the class of detected entangled states. Note that neural
network-based linear witnesses share the same short-
comings with their analytical counterparts, which is
the need for a prior information about the investigated
state.
We train a neural network to classify quantum states

by providing it with results of collective measurements
and demonstrate its significantly better performance
over collectibility and other similar non-linear wit-
nesses for a general 2-qubit state as well as for real ex-
perimental data for a fixed number of measurement
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FIG. 1: (a) Scheme of collectibility measurement: Two copies
ρ̂I , ρ̂I I of the same quantum state are generated. One qubit
from each pair is measured locally meanwhile remaining
qubits are subjected to Bell measurement. Collectibility is
then calculated analytically from obtained coincidence de-
tections. Alternatively, as we investigate in this paper, coinci-
dence detections can be fed to an ANN (artificial neural net-
work) which then labels the states. (b) Schematic depiction of
the confusion matrix used for performance evaluation of the
ANN. TE – truly entangled, FE – falsely entangled, TS – truly
separable, FS – falsely separable, Sep. – separable, Ent. – en-
tangled.

configurations. Moreover, we show the increasing ca-
pability of the neural network when provided with
a larger amount of measurement configuration out-
comes by comparing it against three other analytical
methods that require 12 projections, namely FEF – fully
entangled fraction [34–36], CHSH [10], and entropic
witness [37, 38]. These projections are listed in Ap-
pendix. We use confusion matrix as a method of per-
formanceevaluation for theANNandpreviouslyknown
non-linear witnesses [see Fig.1 (b)]. Diagonal elements
show the number of correctly labeled input states TE
– truly entangled and TS – truly separable further-
more off-diagonal elements provide information about
falsely labeled input states FE – falsely entangled andFS
– falsely separable.

II. NEURAL NETWORK

Random two-qubit states ρ̂I were generated (for
more details see Appendix). The state of two of its
copies is described by density matrix ρ̂I ⊗ ρ̂I I where
ρ̂I I is derived from ρ̂I by swapping subsystems. Sub-
sequently, density matrix was subjected to projective
measurements and probabilities were obtained

Px y =
Tr[(ρ̂I ⊗ ρ̂I I )(Π̂x ⊗ Π̂Bell⊗ Π̂y)]
Tr[(ρ̂I ⊗ ρ̂I I )(Π̂x ⊗ 1̂(4)⊗ Π̂y)]

, (1)

where Π̂x and Π̂y are local projections onto single-qubit
states ∣x⟩ and ∣y⟩, Π̂Bell denotes projection onto the
singlet Bell state and 1̂

(4) represents four-dimensional
identitymatrix. Obtained set of N probabilities P

(i)
x y ; i =

1, ..., N is subsequently fed to a neural network for train-
ing together with labels obtained by the PPT- Peres-
Horodecki criterion [39, 40].
TensorFlow2.0 [41]wasused toprogramaneuralnet-

work capable of classifying quantum states. We experi-
mented with the complexity of the network and our fi-
nal layout of the network with 5 hidden layers contain-
ing 36, 180, 75, 180, and 75 nodes respectively seems to
be the optimal choice to find a balance between ob-
tained precision and computation time. The proposed
network is capable of assigning any quantum statewith
a value w ∈ [0; 1] which can be interpreted as a confi-
dence factor from 0 (certainly entangled) to 1 (certainly
separable). We defined decision threshold ε to con-
vert the w values to a binary label: w < ε⇒ entangled,
w ≥ ε ⇒ separable. By changing ε value we make the
network biased towards the desired decision which al-
lowedus to tune the trade-offbetweenType-I andType-
II errors. The network was trained on 4× 106 samples
and testedon theother 4×105 sampleswithdistribution
containing 67.74 % entangled states and 32.26 % separa-
ble states. For more details about the purity distribu-
tion of the samples see Appendix. The main goal was
to test the network against collectibility, therefore, we
start to train it using the same N = 5 projection settings
(see Appendix for a brief overview on collectibility). In
the next step, we also tested capability of the network
for N = 3, 6, 12, 15 projection settings (see Appendix for
more details).

III. RESULTS

In the first step, wedecided to test the neural network
with decision threshold ε = 0.5 for a several amounts of
projection settings N = 3, 5, 6, 12, 15. As it turns out the
neural network was capable of labeling entangled and
separable states even using 3 projection settings with
an overall success rate of around 83.33 %. For an in-
creasing number of projection settings success rate in-
creased even further and reached 96.55 % for 15 projec-



3

FIG. 2: The result obtained by the neural network with deci-
sion threshold ε= 0.5 forN = 3, 5, 6, 12, 15 anddistribution con-
taining 67.74 % entangled states and 32.26 % separable states.
In this graph probability of false prediction is plotted against
theminimal eigenvalue of a partially transposedmatrix.

tions settings. We plot the probability of incorrect de-
cision as a function of the smallest eigenvalue of the
partially transposed density matrix ρ̂ (see Fig. 2). As
expected, the neural network struggles with the states
close to the PPT decision boundary (minimal eigen-
value close to zero). Unfortunately, the neural network
is, to some extend, prone to Type-I errors (separable
state classified as entangled). As it turns out the net-
work is more likely to make a mistake when classifying
separable states than entangled states. Our solution is
to change thedecision threshold ε to decrease theType-
I error. This means that we demand more certainty
from the network when classifying the entangled state.
By optimizing thresholds we manage to find the value
which satisfies a condition of Type-I error < 1 % which
we find acceptable. It is possible to arbitrarily decrease
the Type-I error by sacrificing the detection capability
characterized by Type-II error. For more detailed de-
pendence of Type-I and Type-II error on threshold for
N = 3, 5, 6, 12, 15 see Fig. 3 and Appendix. In the next
step we compared the network performance against
collectibility. The neural network fed by outcomes of
the same 5 projection settings also required by the col-
lectibility was able to correctly classify 78.14 % of all
states while committing Type-I error of 0.96 % (ε = 0.9).
This performance vastly surpassed the capability of the
Collectibility which identifies only 36.59 % of the states
correctly (see Tab. I). To further highlight the potential
of ANN we compared its performance with analytical
methods (FEF, CHSH, and EW) (see Tab. I). The success
rate of the ANN surpass capabilities of FEF by 6.01 %,
EW by 34.01 %, and CHSH by 46.01 % while committing
Type-I error 0.24 %. This means that if we can accept
some Type-I error, it is possible to achieve a major im-

FIG. 3: Performance dependence of the ANN on decision
threshold ε= 0.5, 0.95 with distribution containing 67.74 % en-
tangled states and 32.26 % separable states depicted as confu-
sionmatrices for: (a) N = 5 ; (b) N = 15.

provement in entangled states detection using the neu-
ral network. Note that the purpose of this research was
not to use ANN simply to fit existing entanglement wit-
nesses, but rather to devise completely new ones that
we later compare with these already known analytical
formulas.
We have investigated the possibility to derive ap-

proximate analytical formulas from the parameters of
trainedANNs. This is a rather complex task andwewere
only able to find a reasonable formula for N = 3, 5 mea-
surement configurations. Using logistic regression, a
witness in the form of

WN = [1+e
−zN ]−1

, (2)

where zN = w⃗N ⋅ p⃗N and p⃗ = (1, PH H , PV V , PHV , PDD , P A A)
for w⃗3 = (−2.3348, 19.3139, 21.5486,−11.4228, 0, 0) and
w⃗5 = (0.0009, 7.7967, 9.6227,−25.8294, 21.9635, 22.0167)
can be obtained. The states for which WN < 0.05 are
classified as entangled (separable otherwise). This
decision boundary implies Type-I error of circa 0.9 %
and Type-II errors of 57.5 % and 44.8 % corresponding
to N = 3, 5, respectively. Type-I errors can be made
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ANN
N 3 5 6 12 15

Type-I error (%) 0.93 0.96 1.18 0.24 0.22
Type-II error (%) 33.47 20.91 15.88 7.74 5.24
Success rate (%) 65.50 78.14 82.94 92.01 94.54

Collectibility FEF EW CHSH
N 5 12 12 12

Type-I error (%) 0 0 0 0
Type-II error (%) 63.41 14.00 42.00 54.00
Success rate (%)¨ 36.59 86.00 58.00 46.00

TABLE I: Comparison of the results obtained by ANN for N =

3, 5, 6, 12, 15 with prominent analytical methods (collectibility,
FEF – fully entangled fraction, EW – entropic witness, CHSH
nonlocality). Both Type-I and Type-II errors are taken for de-
cision threshold ε= 0.9 to ensure Type-I error < 1%.

arbitrary small by lowering the threshold value of WN
for classifying a given state as entangled.

IV. EXPERIMENTAL IMPLEMENTATION

To verify the network capability we decided to fur-
ther test it on a set of real experimental data. For this
purpose, we used the data set from the first-ever Col-
lectibility measurement from 2016 [42]. In that partic-
ular experiment, a class of Werner states of the form of
ρ̂w = p∣ψ−⟩⟨ψ−∣+(1−p)1̂/4, was investigated. ∣ψ−⟩ rep-
resents singlet Bell state, and 1̂/4 stands for the max-
imally mixed state. We set the detection threshold to
ε = 0.9 like in the previous comparisons of the neural
network with collectibility, to be consistent and make
test conditions as fair as possible. Results show that col-
lectibility can classify states with p > 0.89 as entangled
witch corresponds with its theoretical prediction. The
neural network, on the other hand, detects entangled
states when p > 0.44 (see Fig.4). Note that it is known
that Werner states are entangled for p > 1

3
.

V. CONCLUSIONS

We trained a neural network to classify general qubit
states based on nonlinear collective witnesses. Our
main goal was to compare the capability of this net-
work against a prominent analytical representation of
nonlinear witnesses: the collectibility. The network can
classify the general two-qubit states significantly more
efficiently than collectibility with Type-I error < 1 %.
The ANN also surpasses FEF, CHSH, and entropic wit-
ness when taught on 12 projections (the same amount
needed by the mentioned analytical witnesses). In-
creasing the number of projection settings improves
the ANN’s decision even more. We further support
this claim by using the network on a real experimental
data set. The network confirmed its potential by cor-

FIG. 4: Results obtained by neural network and collectibility
respectively froma real experimental data setN = 5. Black full
dots show the probability of a Werner state being labeled as
entangled by the ANN. The light-gray area covers the values
of p which neither the neural network nor collectibility can
classify correctly. The dark-gray area represents the range of
p values for which the ANN classifies the Werner states cor-
rectly and collectibility fails. The dashed lines represent the
decision thresholds ε= 0.9 and 0.5 respectively.

rectly labeling a broad range of states where collectibil-
ity fails. Moreover, it achieved a Type-I error = 0 on
Werner states. Our research promotes the idea of us-
ing artificial intelligence towards a better understand-
ing of the intriguing physical phenomena such as the
entanglement. We have demonstrated that the neural
network can quickly train to become a valid efficient
collective entanglementwitness. Wehavedirectly com-
pared its performance with analytical formulas. Using
nonlinear measurements (on two copies of the state),
our network operates completely free of any apriory in-
formation that can bias comparison of its performance
with analytical counterparts. Moreover, we have shown
that the training performed on numerically generated
states works very well on real experimental data corre-
sponding to states completely unknown to the ANN.
Becauseof technical limitationson thepossible com-

plexity of our ANN and on the number of samples pro-
cessed in ANN training, reaching the limit of zero Type-
I error was not possible. However, we were able to
tune this error to a fraction of a percent by choosing a
proper value of ε. By extrapolating our results for the
whole available range of ε, we conclude that the limit
of vanishing Type-I error is reached by the ANN for ε =
0.9822and ε= 0.9994 for 5and 12measurements, respec-
tively. The Type-II errors for these values of ε are 31.26%
(5 measurements, about 32% better then collectibility)
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and 11.40% (12 measurements, 2.6% better than FEF).
Thus, we have demonstrated that the best known an-
alyticalmethods for certifying entanglement with a few
measurements can be further improved. Notably, the
2.6% smaller Type-I error of ANN with respect to FEF,
means thatANN fails relatively onabout 20% less states
than FEF using the same input. This demonstrates that
there is still a place for improvement in the theory of
experimentally-friendly entanglement detection. The
extrapolation of functional the dependence of Type-I
and II errors on ε was performed by fitting a quadratic
and an exponential curve, respectively. We believe that
the high quality of both fits and the proximity of the
lowest Type-I error data point to 0 justify our conclu-
sions. We hope that our results will stimulate further
research in experimentally-friendly methods of classi-
fying quantum states.
Further to that, the theoretical assumption of zero

Type-I error of analytical witnesses does not hold oper-
ationally because of unavoidable experimental imper-
fections and finite precision of all measurements. As
a result, separable states close to the decision bound-
ary may be misclassified even using theoretically infal-
liblewitnesses. In this study,wehaveallowed theANNa
Type-I error of about 1%whichwe believe is still an ad-
missible error that can be tolerated in practical imple-
mentations burdened by the above-mentioned experi-
mental imperfections. Note that in case of 12measure-
ment configurations, the ANN misclassifies only 1 in
about 400 separable states while simultaneously miss-
classifying about two times less entangled states then
its best performing analytical counterpart, the FEF.
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Appendix: Theoretical framework

A. State sampling and numerical processing

This paper focuses on general 2-qubit states. In order
to correctly prepare test and training data sets, we gen-
erate diagonal elements of the 4×4matrix M according

to [43]:

M =

⎛
⎜⎜⎜⎜
⎝

M11 0 0 0
0 M22 0 0
0 0 M33 0
0 0 0 M44

⎞
⎟⎟⎟⎟
⎠

(3)

where M11 = r1; M22 = r2(1 − M11); M33 = r3(1 −
M11 −M22); M44 = r4(1−M11 −M22 −M33); rn for n =

1, 2, 3, 4 gives uniformly distributed random numbers
from range [0, 1]. Thematrix is then normalized. In the
next step, proper random unitary transformation was
used in order to create a density matrix of general ran-
dom 2-qubit state [44]

U =

⎛
⎜⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0

U10 0

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

1 0 0 0
0

U2
0

0 0
0 0 0 1

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

U3
0 0
0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0

U40 0

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

1 0 0 0
0

U5
0

0 0
0 0 0 1

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0

U60 0

⎞
⎟⎟⎟⎟
⎠

,

(4)

where

U j = e
iα j ( e iψ j cosφ j e iχ j sinφ j

−e−iχ j sinφ j e−iψ j cosφ j
) , j = 1, . . . , 6

(5)
with 0 ≤ φ ≤ π

2
,0 ≤ α,ψ,χ < 2π. The homogenous dis-

tribution of states was ensured by φ j = arcsin
√
ξ j ,ξ j ∈

[0, 1]. Parameters φ j ,ψ j ,χ j ,α j and ξ j are picked from
their respective intervals with uniform probability. The
final densitymatrixwasobtainedasMo =U MU†. Train-
ing and test data were labeled via PPT criterion [39,
40]. To mathematically describe the collective mea-
surement a 4-qubit density matrix M f was defined as
M f = Mo ⊗Mt . To implement Bell-state projection on
the neighing (2, 3) qubits, Mt is obtained from Mo by
switching subsystems

Mt = SW AP M0 SW AP, (6)

where

SW AP =

⎛
⎜⎜⎜⎜
⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟⎟
⎠

. (7)

B. Collectibility

In order to calculate collectibility we used the for-
mula by Rudnicky et al. [26] represented in computa-
tional bases, i.e., H → ∣0⟩; V → ∣1⟩; D → ∣+⟩ = (∣0⟩+
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FIG. 5: Purity distribution of the training and test states.

∣1⟩)/
√

2; A → ∣−⟩ = (∣0⟩− ∣1⟩)/
√

2; R → (∣0⟩− i ∣1⟩)/
√

2
and, L →= (∣0⟩+ i ∣1⟩)/

√
2

W (ρ̂)=1
2
[η+p

2
0(1− r00)+ (1−p0)2(1− r11)

+2p0(1−p0)(1− r01)−1],
(8)

where
η= 8p0(1−p0)

√
r00r11+2p

′
. (9)

In the equations above single-photon projection prob-
ability p0 = Mo00

+Mo11
and p ′ = max{p++, p−−}. Px y

represents probabilities of singleBell state projectionof
non-locally measured qubit conditioned on local pro-
jection onto ∣x⟩ and ∣y⟩ states.[26]

C. Other two-copy witnesses.

A class of two-copy entanglement witnesses can be
calculated using elements of the symmetric matrix [35]

Ri , j = R j ,i = ⟨σ(a1)
i ⊗σ

(a2)
j ⊗ ∣Ψ−b1,b2

⟩⟨Ψ−b1,b2
∣⟩ , (10)

where the expectation values are calculated on two
copies of ρ, i.e., ρa1,b1

⊗ρa2,b2
.To estimate the number of

projections let use the resolution of two-qubit identity
operator valid for an arbitrary i , j = 1, 2, 3, which reads

11⊗2
= ∑

r,s=0,1

∣ri s j ⟩⟨ri s j ∣, (11)

where ∣0i ⟩and ∣1i ⟩are eigenstates ofσi operator associ-
atedwith±1 eigenvalues, respectively. A product of two
Pauli operators reads

σ
(a1)
i ⊗σ

(a2)
j = ∣0i 0 j ⟩⟨0i 0 j ∣+ ∣1i 1 j ⟩⟨1i 1 j ∣

−(∣0i 1 j ⟩⟨0i 1 j ∣+ ∣1i 0 j ⟩⟨1i 0 j ∣). (12)
N ∣i⟩∣ j⟩
3 ∣H⟩∣H⟩, ∣V ⟩∣V ⟩, ∣H⟩∣V ⟩
5 ∣H⟩∣H⟩, ∣V ⟩∣V ⟩, ∣H⟩∣V ⟩, ∣D⟩∣D⟩, ∣A⟩∣A⟩
6 ∣H⟩∣H⟩, ∣V ⟩∣V ⟩, ∣H⟩∣V ⟩, ∣D⟩∣D⟩, ∣R⟩∣R⟩, ∣L⟩∣L⟩
12 ∣D⟩∣D⟩, ∣A⟩∣A⟩, ∣D⟩∣L⟩, ∣A⟩∣R⟩, ∣D⟩∣H⟩, ∣A⟩∣V ⟩,

∣L⟩∣L⟩, ∣R⟩∣R⟩, ∣L⟩∣H⟩, ∣R⟩∣V ⟩, ∣H⟩∣H⟩, ∣V ⟩∣V ⟩,

15 ∣D⟩∣D⟩, ∣A⟩∣A⟩, ∣D⟩∣L⟩, ∣A⟩∣R⟩, ∣D⟩∣H⟩, ∣A⟩∣V ⟩, ∣L⟩∣L⟩,
∣R⟩∣R⟩, ∣L⟩∣H⟩, ∣R⟩∣V ⟩, ∣H⟩∣H⟩, ∣V ⟩∣V ⟩, ∣D⟩∣R⟩, ∣D⟩∣V ⟩, ∣L⟩∣V ⟩

TABLE II: List of specific projections settings used for the
learning of the artificial neural network.

Byadding the corresponding sides of Eq. (11) toEq. (12)
and subtracting 11⊗2 we obtain

σ
(a1)
i ⊗σ

(a2)
j = 2(∣0i 0 j ⟩⟨0i 0 j ∣+ ∣1i 1 j ⟩⟨1i 1 j ∣)−11⊗2

. (13)

Thismeans thatmeasuring all 6 different elements of R
(i.e., i ≤ j for i , j = 1, 2, 3) requires 12 projections in total.
These projections read

∣D⟩∣D⟩, ∣A⟩∣A⟩, ∣D⟩∣L⟩, ∣A⟩∣R⟩,

∣D⟩∣H⟩, ∣A⟩∣V ⟩, ∣L⟩∣L⟩, ∣R⟩∣R⟩, (14)
∣L⟩∣H⟩, ∣R⟩∣V ⟩, ∣H⟩∣H⟩, ∣V ⟩∣V ⟩.

By using these 12 projections we determine matrix Q
used to calculate entanglement witnesses. Fully entan-
gled fraction f can be used to construct an entangle-
ment witness [35]

F = 2 f −1= 1
2
[Tr(

√
Q)−1]. (15)

This and the following witnesses are positive, if entan-
glement is detected and negative, otherwise. The max-
imum value is 1.

Furthermore, by using an optimal CHSH inequality
we can construct an entanglement witness [35] as

M = Tr(Q)−min[eig(Q)]. (16)

It is also possible to useQ to express an entropic entan-
glement witness [35]

E = 1
2
[Tr(Q)−1]. (17)

N 3 5 6 12 15
ε T-I T-II T-I T-II T-I T-II T-I T-II T-I T-II
0.5 9.23 7.42 7.09 4.98 5.47 5.03 2.17 2.43 1.50 1.94
0.55 8.03 8.84 6.17 5.91 4.77 5.83 1.34 3.55 1.27 2.19
0.6 6.94 10.49 5.32 6.97 4.14 6.73 1.15 3.89 1.06 2.48
0.65 5.87 12.38 4.48 8.24 3.47 7.94 0.97 4.31 0.86 2.82
0.7 4.81 14.65 3.72 9.73 2.94 9.12 0.81 4.76 0.67 3.22
0.75 3.73 17.64 3.18 10.97 2.53 10.17 0.66 5.29 0.50 3.71
0.8 2.75 21.37 1.93 15.05 2.12 11.51 0.51 5.91 0.41 4.07
0.85 1.72 26.79 1.47 17.38 1.67 13.28 0.37 6.68 0.32 4.53
0.9 0.93 33.47 0.96 20.91 1.18 15.88 0.24 7.75 0.22 5.24
0.95 0.41 41.21 0.42 27.42 0.63 20.41 0.11 9.61 0.11 6.77

TABLE III: Evolution of Type-I and Type-II error for different
thresholds ε. T-I and T-II represent Type-I and Type-II errors
respectively and are listed in percentages.
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FIG. 6: Dependence of Type I andType II errors on ε threshold
for varying numbers of projections: Three projection N = 3
(△), fiveprojectionsN = 5 (3), sixprojectionsN = 6 (9), twelve
projections N = 12 (⭐), fifteen projections N = 15 (○).
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